
Earwax-server

Chris Norman

Nov 16, 2020

CONTENTS:

1 earwax_server 1
1.1 earwax_server package . 1

2 Indices and tables 7

Python Module Index 9

Index 11

i

ii

CHAPTER

ONE

EARWAX_SERVER

1.1 earwax_server package

1.1.1 Module contents

A lightweight and event driven server framework.

This module is designed for creating servers (particularly for games) with minimal code.

Using a Pyglet-style event framework, you can create servers quickly and efficiently:

from earwax_server import Server

s = Server()
s.run(1234)

The above code creates a very minimal server. This server does nothing, since any data sent to it simply disappears.

You can verify it is working by enabling logging, and watching for incoming connections:

import logging
from earwax_server import Server
logging.basicConfig(level='INFO')
s = Server()
s.run(1234)

You can connect to the running instance with telnet.

To get the sent data, provide a handler for the Server.on_data event:

@s.event
def on_data(ctx, data) -> None:

print(data)

The provided data will be a bytes-like object.

There are of course events which are dispatched when a connection is made, and when a connection disconnects.

There is even a rudimentary way of blocking connections, by subclassing Server, and overriding the Server.
can_connect() method.

class earwax_server.ConnectionContext(socket: gevent._socket3.socket, address: Tuple[str, int,
int, int])

Bases: object

A context for holding connection information.

1

Earwax-server

An instances of this class is created every time a new connection is made to a Server instance. As such,
contexts are used a lot when dispatching events.

Variables

• socket – The socket that this context represents.

• address – The address that the socket is connected from.

• hostname – The hostname of the remote client.

• port – The port that the socket is connected on.

• logger – A logger for this context.

The logger will already have a name constructed from hostname, and port.

address: Tuple[str, int, int, int]

disconnect()→ None
Disconnect this context.

Disconnects the underlying socket.

hostname: str

logger: logging.Logger

port: int

send_bytes(buf: bytes, encoding: Optional[str] = None)→ None
Send an encoded string to this context.

Sendds a bytes-like object to self.socket.

The string will have '\r\n' appended to it.

Parameters

• buf – The bytes-like object to send.

This value must have already been encoded.

• encoding – The value to use for encoding the line terminator.

If not specified, the system default encoding will be used.

send_raw(data: bytes)→ None
Send data to this context.

Sends raw data to self.socket.

Parameters data – The data to send.

send_string(string: str)→ None
Send an unencoded string to this context.

Sends the string to self.socket.

The string is automatically encoded to a bytes-like object, and '\r\n' is appended.

Parameters string – The string to send (minus the end of line terminator).

This value must be an unencoded string.

socket: gevent._socket3.socket

2 Chapter 1. earwax_server

Earwax-server

exception earwax_server.EventNameError
Bases: Exception

There was a problem with an event name.

class earwax_server.Server
Bases: object

A server instance.

By attaching event handlers to instances of this class, you can build servers with very little code.

When you have attached all the events, use the run() method to start listening for connections.

Variables

• connections – Every context that is connected to this server.

• stream_server – The underlying gevent server.

can_connect(ctx: earwax_server.ConnectionContext)→ bool
Determine if a context can connect or not.

Return True if the connection is allowed, False otherwise.

Parameters ctx – The context that is trying to connect.

connections: List[earwax_server.ConnectionContext]

dispatch_event(name: str, *args, **kwargs)→ None
Dispatch an event.

If the given name has not been registered with the Server.register_event_type() method, then
EventNameError will be raised.

Parameters

• name – The name of the event type to dispatch.

• args – The positional arguments to be passed to the event handlers.

• kwargs – The keyword arguments to pass to the event handlers.

event(value: Union[Callable[[. . .], Optional[bool]], str]) → Union[Callable[[. . .], Optional[bool]],
Callable[[Callable[[. . .], Optional[bool]]], Callable[[. . .], Optional[bool]]]]

Register a new event.

The new event handler will be prepended to the event handlers list, thus allowing newer event handlers to
override older ones.

When the Server.dispatch_event() is used, the list of handlers will be iterated over, and each
handler executed.

If a handler returns EVENT_HANDLED, execution ends.

If the provided event name (see below) is not a recognised event type, then EventNameError will be
raised.

Parameters value – Either the name of an event type this handler should listen to, or an event
handler.

If value is a string, then it will be considered the name of an event type, and a callable will
be returned so this method can be used as a decorator.

If value is a callable, then it is assumed to be a handler function, and its __name__
attribute is used as the name. In this case, the handler function is returned directly.

1.1. earwax_server package 3

Earwax-server

handle(socket: gevent._socket3.socket, address: Tuple[str, int, int, int])→ None
Deal with new connections.

This function is used with self.stream_server.

Parameters

• socket – The socket that has just connected.

• address – The address of the new conection.

on_block(ctx: earwax_server.ConnectionContext)→ None
Handle a blocked connection.

This event is dispatched when an address has been blocked.

Parameters ctx – The connection context that has been blocked.

on_connect(ctx: earwax_server.ConnectionContext)→ None
Deal with new connections.

This event is dispatched when a new connection is established.

By the time this event is dispatched, it has already been established by the can_connect() method that
this address is allowed to connect.

Parameters ctx – The context that has connected.

on_data(ctx: earwax_server.ConnectionContext, data: bytes)→ None
Handle incoming data.

This event is dispatched when data is received over a connection.

Parameters

• ctx – The originating connection context.

• data – The data which has been received.

This value will be unchanged from when it was received. As such, no decoding will have
yet been performed, hence why a bytes object is passed, rather than a string.

on_disconnect(ctx: earwax_server.ConnectionContext)→ None
Deal with disconnections.

This event is dispatched when a connection is closed.

Parameters ctx – The context that is disconnecting.

register_event_type(name: str)→ str
Register a new event type.

The name of the new event type will be returned.

If the name already exists, EventNameError will be raised.

Parameters name – The name of the new type.

run(port: int, host: str = '', **kwargs)→ None
Start the server running.

Set self.stream_server to an instance of gevent.server.StreamServer, and call its
serve_forever method.

All extra keyword arguments are passed to the constructor of StreamServer.

Parameters

4 Chapter 1. earwax_server

Earwax-server

• port – The port to listen on.

• host – The interface to listen on.

stream_server: Optional[gevent.server.StreamServer]

1.1. earwax_server package 5

Earwax-server

6 Chapter 1. earwax_server

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

7

Earwax-server

8 Chapter 2. Indices and tables

PYTHON MODULE INDEX

e
earwax_server, 1

9

Earwax-server

10 Python Module Index

INDEX

A
address (earwax_server.ConnectionContext attribute),

2

C
can_connect() (earwax_server.Server method), 3
ConnectionContext (class in earwax_server), 1
connections (earwax_server.Server attribute), 3

D
disconnect() (earwax_server.ConnectionContext

method), 2
dispatch_event() (earwax_server.Server method),

3

E
earwax_server

module, 1
event() (earwax_server.Server method), 3
EventNameError, 2

H
handle() (earwax_server.Server method), 3
hostname (earwax_server.ConnectionContext at-

tribute), 2

L
logger (earwax_server.ConnectionContext attribute), 2

M
module

earwax_server, 1

O
on_block() (earwax_server.Server method), 4
on_connect() (earwax_server.Server method), 4
on_data() (earwax_server.Server method), 4
on_disconnect() (earwax_server.Server method), 4

P
port (earwax_server.ConnectionContext attribute), 2

R
register_event_type() (earwax_server.Server

method), 4
run() (earwax_server.Server method), 4

S
send_bytes() (earwax_server.ConnectionContext

method), 2
send_raw() (earwax_server.ConnectionContext

method), 2
send_string() (earwax_server.ConnectionContext

method), 2
Server (class in earwax_server), 3
socket (earwax_server.ConnectionContext attribute), 2
stream_server (earwax_server.Server attribute), 5

11

	earwax_server
	earwax_server package

	Indices and tables
	Python Module Index
	Index

