

Welcome to earwax-server’s documentation!

Contents:

	earwax_server
	earwax_server package

Indices and tables

	Index

	Module Index

	Search Page

earwax_server

	earwax_server package
	Module contents

earwax_server package

Module contents

A lightweight and event driven server framework.

This module is designed for creating servers (particularly for games) with
minimal code.

Using a Pyglet-style event framework, you can create servers quickly and
efficiently:

from earwax_server import Server

s = Server()
s.run(1234)

The above code creates a very minimal server. This server does nothing, since
any data sent to it simply disappears.

You can verify it is working by enabling logging, and watching for incoming
connections:

import logging
from earwax_server import Server
logging.basicConfig(level='INFO')
s = Server()
s.run(1234)

You can connect to the running instance with telnet.

To get the sent data, provide a handler for the Server.on_data event:

@s.event
def on_data(ctx, data) -> None:
 print(data)

The provided data will be a bytes-like object.

There are of course events which are dispatched when a connection is made, and
when a connection disconnects.

There is even a rudimentary way of blocking connections, by subclassing
Server, and overriding the Server.can_connect() method.

	
class earwax_server.ConnectionContext(socket: gevent._socket3.socket, address: Tuple[str, int, int, int])

	Bases: object

A context for holding connection information.

An instances of this class is created every time a new connection is made
to a Server instance. As such, contexts are used a lot when
dispatching events.

	Variables

	
	socket – The socket that this context represents.

	address – The address that the socket is connected from.

	hostname – The hostname of the remote client.

	port – The port that the socket is connected on.

	logger – A logger for this context.

The logger will already have a name constructed from hostname, and port.

	
address: Tuple[str, int, int, int]

	

	
disconnect() → None

	Disconnect this context.

Disconnects the underlying socket.

	
hostname: str

	

	
logger: logging.Logger

	

	
port: int

	

	
send_bytes(buf: bytes, encoding: Optional[str] = None) → None

	Send an encoded string to this context.

Sendds a bytes-like object to self.socket.

The string will have '\r\n' appended to it.

	Parameters

	
	buf – The bytes-like object to send.

This value must have already been encoded.

	encoding – The value to use for encoding the line terminator.

If not specified, the system default encoding will be used.

	
send_raw(data: bytes) → None

	Send data to this context.

Sends raw data to self.socket.

	Parameters

	data – The data to send.

	
send_string(string: str) → None

	Send an unencoded string to this context.

Sends the string to self.socket.

The string is automatically encoded to a bytes-like object, and
'\r\n' is appended.

	Parameters

	string – The string to send (minus the end of line terminator).

This value must be an unencoded string.

	
socket: gevent._socket3.socket

	

	
exception earwax_server.EventNameError

	Bases: Exception

There was a problem with an event name.

	
class earwax_server.Server

	Bases: object

A server instance.

By attaching event handlers to instances of this class, you can build
servers with very little code.

When you have attached all the events, use the run() method
to start listening for connections.

	Variables

	
	connections – Every context that is connected to this server.

	stream_server – The underlying gevent server.

	
can_connect(ctx: earwax_server.ConnectionContext) → bool

	Determine if a context can connect or not.

Return True if the connection is allowed, False otherwise.

	Parameters

	ctx – The context that is trying to connect.

	
connections: List[earwax_server.ConnectionContext]

	

	
dispatch_event(name: str, *args, **kwargs) → None

	Dispatch an event.

If the given name has not been registered with the
Server.register_event_type() method, then EventNameError
will be raised.

	Parameters

	
	name – The name of the event type to dispatch.

	args – The positional arguments to be passed to the event
handlers.

	kwargs – The keyword arguments to pass to the event handlers.

	
event(value: Union[Callable[[…], Optional[bool]], str]) → Union[Callable[[…], Optional[bool]], Callable[[Callable[[…], Optional[bool]]], Callable[[…], Optional[bool]]]]

	Register a new event.

The new event handler will be prepended to the event handlers list,
thus allowing newer event handlers to override older ones.

When the Server.dispatch_event() is used, the list of handlers
will be iterated over, and each handler executed.

If a handler returns EVENT_HANDLED, execution ends.

If the provided event name (see below) is not a recognised event type,
then EventNameError will be raised.

	Parameters

	value – Either the name of an event type this handler should
listen to, or an event handler.

If value is a string, then it will be considered the name of
an event type, and a callable will be returned so this method can
be used as a decorator.

If value is a callable, then it is assumed to be a handler
function, and its __name__ attribute is used as the name. In
this case, the handler function is returned directly.

	
handle(socket: gevent._socket3.socket, address: Tuple[str, int, int, int]) → None

	Deal with new connections.

This function is used with self.stream_server.

	Parameters

	
	socket – The socket that has just connected.

	address – The address of the new conection.

	
on_block(ctx: earwax_server.ConnectionContext) → None

	Handle a blocked connection.

This event is dispatched when an address has been blocked.

	Parameters

	ctx – The connection context that has been blocked.

	
on_connect(ctx: earwax_server.ConnectionContext) → None

	Deal with new connections.

This event is dispatched when a new connection is established.

By the time this event is dispatched, it has already been established
by the can_connect() method that this address is allowed
to connect.

	Parameters

	ctx – The context that has connected.

	
on_data(ctx: earwax_server.ConnectionContext, data: bytes) → None

	Handle incoming data.

This event is dispatched when data is received over a connection.

	Parameters

	
	ctx – The originating connection context.

	data – The data which has been received.

This value will be unchanged from when it was received. As such, no
decoding will have yet been performed, hence why a bytes object is
passed, rather than a string.

	
on_disconnect(ctx: earwax_server.ConnectionContext) → None

	Deal with disconnections.

This event is dispatched when a connection is closed.

	Parameters

	ctx – The context that is disconnecting.

	
register_event_type(name: str) → str

	Register a new event type.

The name of the new event type will be returned.

If the name already exists, EventNameError will be raised.

	Parameters

	name – The name of the new type.

	
run(port: int, host: str = '', **kwargs) → None

	Start the server running.

Set self.stream_server to an instance of
gevent.server.StreamServer, and call its serve_forever method.

All extra keyword arguments are passed to the constructor of
StreamServer.

	Parameters

	
	port – The port to listen on.

	host – The interface to listen on.

	
stream_server: Optional[gevent.server.StreamServer]

	

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 earwax_server	

Index

 A
 | C
 | D
 | E
 | H
 | L
 | M
 | O
 | P
 | R
 | S

A

 	
 	address (earwax_server.ConnectionContext attribute)

C

 	
 	can_connect() (earwax_server.Server method)

 	
 	ConnectionContext (class in earwax_server)

 	connections (earwax_server.Server attribute)

D

 	
 	disconnect() (earwax_server.ConnectionContext method)

 	
 	dispatch_event() (earwax_server.Server method)

E

 	
 	
 earwax_server

 	module

 	
 	event() (earwax_server.Server method)

 	EventNameError

H

 	
 	handle() (earwax_server.Server method)

 	
 	hostname (earwax_server.ConnectionContext attribute)

L

 	
 	logger (earwax_server.ConnectionContext attribute)

M

 	
 	
 module

 	earwax_server

O

 	
 	on_block() (earwax_server.Server method)

 	on_connect() (earwax_server.Server method)

 	
 	on_data() (earwax_server.Server method)

 	on_disconnect() (earwax_server.Server method)

P

 	
 	port (earwax_server.ConnectionContext attribute)

R

 	
 	register_event_type() (earwax_server.Server method)

 	
 	run() (earwax_server.Server method)

S

 	
 	send_bytes() (earwax_server.ConnectionContext method)

 	send_raw() (earwax_server.ConnectionContext method)

 	send_string() (earwax_server.ConnectionContext method)

 	
 	Server (class in earwax_server)

 	socket (earwax_server.ConnectionContext attribute)

 	stream_server (earwax_server.Server attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to earwax-server’s documentation!

 		
 earwax_server

 		
 earwax_server package

 		
 Module contents

_static/minus.png

_static/plus.png

_static/file.png

